
112 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002

Dyadic Green’s Function Modifications for Obtaining
Attenuation in Microstrip Transmission Layered

Structures With Complex Media
Clifford M. Krowne, Senior Member, IEEE

Abstract—Rigorous derivation of the correction to the Green’s
function for a microstrip structure containing complex layered
media is done for imperfect metallization. A hierarchy of formulas
is found consistent with a full-wave electromagnetic code em-
ploying zero-thickness extent conductors for the guiding structure
metal. At the top of the hierarchy are formulas that utilize new
Green’s functions of the structure, whereas at the bottom are
formulas that are only dependent on the conductor geometry and
material properties. Numerical examples are provided to show
the sensitivity of the propagation constant attenuation to those
elegantly simple formulas at the bottom of the hierarchy.

Index Terms—Attenuation constant, complex media, dyadic
Green’s function, microstrip, spectral-domain code.

I. INTRODUCTION

SPECTRAL-DOMAIN (SD) codes based upon the moment
method, which solve the electromagnetic integral-equation

problem for a multilayered structure, can place their prime
focus on the material properties of the layers. Studies of the var-
ious anisotropies, nonreciprocities, crystallographic rotations,
and biasing field orientations in ferromagnetic or ferroelectric
materials can all be done with such codes [1], [2]. Theoretical
investigations of this nature can be useful in deciding what struc-
tures to construct for integrated circuit applications [3]1 . Device
behavior will most often be decided by the resulting phase
properties of the transmission structures (e.g., phase shifting,
coupling, delay). However, being able to reasonably accurately
predict the loss consequences of the imperfect metallizations
used in actual devices may be necessary for the eventual
development of working devices in circuits.

Full-wave electromagnetic codes employing zero-thickness
extent conductors for the guiding structure metal can be
modified to account for the finite conductivity of the metal-
lization and thickness. The most straightforward modifications,
which are self-consistent in that they avoid any perturbational
approaches, will alter the structure interfacial dyadic Green’s
function [4] where the guiding metal is located, with an
expression that only depends upon the metallization geometry
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1In [3], voltage bias labels were inadvertently reversed in Fig. 3.

and conductivity. These modifications can be employed most
broadly for different SD codes. These modifications can be
shown to come from a more general class of modifications that
require additional structure dyadic Green’s functions at the
interface. Governing equations that employ these additional
structure dyadic Green’s functions at the interface have a form
that is applicable to different SD codes, but each code will
require its own specific interfacial dyadic Green’s functions
to actually effect the modification. Thus, the more general
approach cannot be as easily applied to different SD codes.

For situations where the metallizations are very thick
compared to other structure geometric dimensions, where the
metallization thicknesses are expected to significantly alter
the basic device behavior, or when it is desired to obtain the
nearly exact field distribution in the metallization vicinity, the
approach discussed in this paper should not be used. Then
other methods taking into account explicitly the metallization
geometry and material characteristics should be used. It should
be noted here that metallizations can be quite complicated,
employing several layers of different conductivity materials,
different surface roughness properties, varying edge shapes,
and even different cross-sectional configurations. Appropriate
two-dimensional methods include finite difference, finite
element, mode matching, SD, method-of-lines, or some other
approach, which either model the metal with surface impedance
or interior metallization discretization (e.g. [5]–[21]2 ).

II. GENERAL THEORY

At the location where the guiding metal exists (if we are
talking about a single interface)

(1)

, , and are, respectively, the total electric-field vector at
the interface, electric-field vector at the interface where there is
a dielectric mismatch, and electric-field vector at the interface
where there is a conductor. and are zero outside their
existence range. Since we will test this relationship with surface
currents, it is the following tangential form that is of greatest
interest:

(2)

2In [21], the first hyperbolic factor ofJ(x; 0) in (1) should readsinh(t �
z )=sinh(t ). Communicated by Rolf H. Jansen.
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Multiply the total electric field by a test surface current vector
or its conjugate and integrate over the interfacial coordinate

. The result is

(3a)

(3b)

where is the box width. Since and or are comple-
mentary functions on the finite-space, the first integral on the
right-hand side is zero. Thus, we find

(4a)

or

(4b)

Each integral on the left-hand side may be subject to having
Parseval’s theorem applied, transforming each into either an in-
tegral or an infinite summation, depending on whether or not
the transformed variable is continuous or discrete. Since the
domain for is finite, must be discrete and it may be set de-
pendent on the integer index, i.e., . The relation
becomes

(5)

Here, is the parity integer for the test basis function (
for even symmetry with respect to the-axis, for odd
symmetry). We have only transformed the second integral be-
cause there is a problem that must be addressed in how it is to
be evaluated. really must represent some transform
averaging over the thickness of the conductor, say, over slices
taken at different values . This averaging may be

denoted by with the assignment

. This averaging is not unique.

The transform of the field in the conductor is

(6)

where the second line has shifted the-coordinate to the strip
center and limits the integration to where the conductor field
exists. Applying the averaging operator to this expression

(7)

Inserting the average into (5)

(8)

Now applying Parseval’s theorem to the first integral in (8)

(9)
or

(10)

Indexing for is based upon a single index notation, which al-
lows discrimination between different current components. This
is done by setting

(11a)

(11b)

These are combined into a single indexing vector scheme

(12)

where

(13a)

(13b)

Surface current is then expanded as follows:

(14)

III. REPRESENTATION OFCONDUCTOR BYSURFACEIMPEDANCE

In order to develop (10) further, evaluation of
must be addressed. Here, we will consider

the conductor to be thick enough that it can be viewed as being
composed of an upper piece of one material having a surface
impedance and a lower piece having . The electric field
at either surface is given by

(15)
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Fig. 1. Cross-sectional diagram of an example complex layered structure
propagating waves in thez-direction. Here, a strip conductor is over a
multilayered substrate composed of anisotropic ferroelectric and ferromagnetic
materials biased with static vector electric and magnetic fields. Conductor cross
section above and below is labeled with relevant tangential fields analyzed in
the text.

Here, is the unit surface normal pointing from the metal into
the upper or lower region. Thus (see Fig. 1 for location of surface
tangential fields and normals of the strip)

(16)

In (16), subscripts have been added to emphasize the tan-
gential nature of the resultant electric-field components in (15).
It is apparent that the cross product does not so require the

-fields to be identified, but such identification is useful in
the soon-to-follow relation of the surface magnetic fieldsto
the surface currents. Surface electric fields may be written as

(17)

This field is the result of the superposition of all the terms in
the expansion (14), operating through the propagation structure
Green’s function. Inserting (15) and (17) into (16)

(18)

Here, the linearity property of the averaging operator has
been used to extract the coefficientsand the vector .
Upper and lower surface magnetic fields may be related by

(19)

Relation (19) is exact at a single interface, thus, it must be
viewed as an approximation, somewhat convincingly since
the fields in it are tied together by the single surface current
characteristic of infinitely thin-metal Green’s function SD
solvers. Equation (19) may be employed for basis function,
and used to eliminate unknown upper field by using a
magnetic dyadic Green’s function for the unknown lower field

, i.e.,

(20)

which is already available for the structure.
Putting (19) and (20) into (18)

(21)

The effective surface electric field in the testing expression
(10) can be written as

(22)

where the testing expression (10) becomes

(23)

The above reduction is valid if the averaging operation is strictly
linear, in actuality required in a rigorous sense since the Green’s
function approach is a linear process. Extraction of surface cur-
rent has also depended upon the property that the ordering of the
products inside the averaging operator does not matter. That is,
the unit normal vector crossed into the dyadic magnetic Green’s
function, then multiplied by the surface current, yields the same
result as the dyadic magnetic Green’s function multiplied by the
surface current, followed by a cross-product multiplication by
the unit normal vector. Equation (22) is a rather remarkable re-
sult, as it allows us to write down by inspection the new Green’s
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function for the finite-sized and finite-conductivity metal strip
in our anisotropic layered structure

(24)

We will not pursue this approach further, other than to say that,
although the form has been presented, it does not prove that, in
fact, such a closed-form representation can be found. Instead, in
order to have some specific rules for constructing the average,
resort to a procedure found in [22]. For any two spectral vectors

and , the average is

(25)
Inversion of the magnitudes in (25) will make the averaging op-
erator nonlinear, showing that such a construction to account for
finite thickness and conductivity of the metal must be an approx-
imation since the actual problem is linear in the driving current

. Nevertheless, we will enlist this formula to have something
definite to discuss.

Therefore, write the conductor field as

(26)

which comes about by using the relationship between the mag-
netic fields at the lower and upper surfaces and their respective
surface currents. Using the averaging recipe (25)

(27)

Surface components in (27) are related to the interfacial ex-
panded surface current by

(28)

Note that the right-hand-side current components in (28) can be
related to the magnetic fields by

(29)

and these magnetic fields to the surface current through (19)
and (20). This provides a complicated method for evaluating
(27) in terms of , and we see immediately that indeed the

quantity is nonlinearly related to . With

(27), we can follow the procedure used in getting in (22)
and produce what can only be stated as an improper Green’s
function, as shown in (30), at the bottom of this page. This type
of Green’s function only has meaning when used to reconstruct
the field [which is used in the testing procedure (23)], and it
is not unique—only when multiplied by is the result unique.

has been shown to demonstrate the intrinsic complexity
of trying to get a tractable modified Green’s function using the
averaging procedure in (25).

Consider what happens to (30) when the upper and lower sur-
face impedances are equal, i.e., , as shown in (31), at
the bottom of the following page. When and are taken
to be real, we get (32), shown at the bottom of the following
page. Next, look at how (31) for simplifies when

(33)

where it is assumed that is an index independent. We expect
, and substituting

(34)

into (31) yields

(35)

(30)
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Diagonal correction element reduces to when
there is no top surface current or bottom surface
current and to when the top and bottom surface
currents are equal .

IV. TANGENTIAL-FIELD BEHAVIOR IN STRIP—EXPLICIT

FIELD DETERMINATION

Detailed field behavior within the strip metal can be found by
utilizing the Maxwell curl equations

(36a)

(36b)

For harmonic conditions where the time variation is , these
equations take the form

(37a)

(37b)

If , for all metals encountered, the strip will look like
a large uniform sheet in the -plane. Thus, and

and

(38a)

(38b)

In order to learn what the tangential components do when trav-
eling through the strip in the normal-direction, we will exclude

normal - or -field components, making the waves .
Equation (38) becomes for the pair

(39a)

(39b)

For the pair, (38) become

(40a)

(40b)

Adding these two equations together in a vector fashion

(41a)

(41b)

These may be rewritten as

(42a)

(42b)

Factoring out enables complete representation of these par-
tial differential equations in terms of field vectors

(43a)

(43b)

(31)

(32)
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Taking the partial derivative of (43a) and inserting (43b) into it
gives

(44)

or

(45)

because
holds. A similar statement may be made for thefield

as follows:

(46)

Solutions to (45) and (46) are

(47a)

(47b)

(47c)

Boundary conditions at and are

(48a)

(48b)

Applying (48a) to (47) produces

(49a)

(49b)

Placing (47) into (43a) and (43b) gives, respectively, at

(50a)

(50b)

(50c)

Substitution of (49) and (50) into (47) produces the field solu-
tion within the metal strip

(51a)

(51b)

Now we want to relate the upper and lower fields. This is done
by applying boundary conditions (48b) to (51) as follows:

(52a)

(52b)

Next, let us convert these equations into an impedance format.
Solve (52b) for the normal times electric-field cross-product

(53)

Multiply (53) by to get the lower electric field

(54)

or

(55a)

Place (55a) into (52a) to obtain the upper electric field

(55b)

Equation (55a) and (55b) may be recast in an explicit impedance
form

(56a)

(56b)

(56c)

For metals like copper, silver, and gold, it is indeed true that
[23], making (47c) and (50c) become

GHz
m (57a)

(57b)

The skin depth , m at , GHz in
copper. Thus, the assumption that, holds if ,

m at , GHz because we are taking .

V. MODIFIED DYADIC GREEN’S FUNCTION FOR FINITE

METAL THICKNESS

Follow the procedure in (26) to get theth average, invoking
(56)

(58)

Then use (25) to obtain (59), shown at the bottom of the
following page. From (59), we may again create an improper
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dyadic Green’s function. Consider a limiting case when we
take , not an unreasonable assignment for a strip
configuration when the preponderance on the material is in
a substrate form. (In symmetric stripline this is an invalid
assignment.) Equation (59) reduces to

(60)

Inserting (56c) and (57) into (60), noting that ,
the coefficient in (60) is shown in (61), at the bottom of this
page.

If instead of using (25) we go back to (58), and allow the
upper surface current to be zero

(62)

and evaluate the averaging operator as a simple sum (not a
weight), we find

(63)

This gives

(64)
Finally, if we neglect the nondiagonal matrix element in the
field impedance (56c)

(65)

Form (65) is like that seen in [24] and gives similarvariation
to [25]3 . The three cases in (61), (64), and (65) generate the
three modified dyadic Green’s functions (note that ),
shown in (66)–(68), at the bottom of this page.

3In [25], note thatt = 0:5 �m and� = 2:44� 10 
 � cm= 2:44�
.

(59)

(61)

(66)

(67)

(68)
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Fig. 2. Attenuation constant for dielectric loss versus frequency fortan � = 2:0� 10 . The code (basis function numbern = n = 3 and spectral number
n = 200) was compared to [27] (note that, in this reference, an approximate two-term expansion was used for surface currentJ with J = 0), which is also a
full-wave calculation. Microstrip structure has width= 0:500 mm, substrate height= 0:500mm, relative dielectric constant= 10:0, box width= 20 mm, and
box height above substrate (air region)= 19:5 mm.

Fig. 3. Attenuation constant for dielectric loss versus frequency fortan � = 1:0� 10 . All other parameters are the same as in Fig. 2.

There are three regimes of metal thickness: , ,
. When , the sinh and cosh functions approach

and tanh approaches one. This makes

(69)

for all formulas (61), (64), and (65). In the other extreme when

(70)

It is clear from (70) that (61) and (65) may be the preferable ones
to employ because of the unity limit expected for .

VI. NUMERICAL RESULTS FOR THEANALYTICAL LIMITING

MODIFIED GREEN’S FUNCTION FORMULAS

Although we are particularly interested in applying the re-
sults here to highly anisotropic layered guiding structures, it is

possible to validate some of the concepts here in a much sim-
pler system. We choose microstrip over a GaAs substrate, which
was measured for various geometric dimensions over the nom-
inal 5–40-GHz frequency range [26]. To compare our theoret-
ical dyadic Green’s function modification work to experiment,
we must also include dielectric loss to obtain the total loss.

In order to test our anisotropic Green’s function SD code
for dielectric-loss evaluation, the code (basis function number

and spectral number ) was com-
pared to [27], which is also a full-wave calculation. Test case
was microstrip with width mm, substrate height

mm, relative dielectric constant , box
width mm, and box height above substrate (air
region) mm (notation used from [27]—note that, in
this reference, an approximate two-term expansion was used for
surface current with ). Two loss tangent cases were
investigated, i.e., and , which are
shown in Figs. 2 and 3 ( , real part,
and for volumetric conductive dielectric loss).



120 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 1, JANUARY 2002

Fig. 4. Attenuation constant for microstrip versus frequency for varying box widthb. Loss tangent held totan � = 1:0 � 10 and conductor loss included
using (65). Structure is a 70-�m-wide microstrip, with substrate height 100�m, relative dielectric constant" = 12:9, box height above substrate (air region)
10 mm, metal thicknesst = 3 �m and conductivity� = 4:1� 10 S/m (gold).n = n = 4 andn = 300.

Fig. 5. Attenuation constant for microstrip versus frequency for varying loss tangent using (65) for conductor effect. Widthb = 12:07 mm, with all other
parameters the same as in Fig. 4. Reference [26] experimental data are shown.

Slight waviness in the reference’s curves are due to reading off
the data, but agreement with our code results is excellent, being
within 1%, and allowing us to proceed on to the total loss cal-
culation.

Now return to the experimental microstrip cases. First con-
sider a m wide microstrip, with substrate height

m, relative dielectric constant , box height
above substrate (air region) mm, and varying box
width , , mm. The latter two dimen-
sions, i.e., and , are not constrained directly by the labo-
ratory setup since an enclosure was not used. However, being
completely open on top allows to be chosen large enough
to avoid propagation constant sensitivity. Fig. 4 shows the de-
pendence of attenuation on using (65) for conductor strip
loss. [This result is also the common factor in (61) and (64).]
The middle result is the one we will use forsince it best cor-

responds to the substrate extent. Thischoice is also consistent
with [28], which also looked at that case. Notice the sensitivity
of on . On the other hand, ( total propaga-
tion constant), only weakly depends on. Using mm,
Fig. 5 plots the experimental and theoretical mm results
for varying loss tangent ( and ), with
metal thickness m and conductivity S/m
(mostly gold). Loss tangent may best de-
scribe the substrate gallium–arsenide material. Since we have
not taken into account either surface roughness or ground plane
(12- m thick Au) conductor loss, both of which should be very
tiny, this agreement, which is within a few percent, is consid-
ered to be good.

Fig. 6 compares theory and experiment for the m
case. At and below GHz, agreement is excellent

; above this frequency, the data is suspect.
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Fig. 6. Comparison of theoretical and experimental [26] attenuation constant for thew = 10 �m microstrip case.

TABLE I
ATTENUATION CONSTANT � (IN DECIBELS PERMILLIMETER) BASED

UPON DYADIC GREEN’S FUNCTION MODIFICATION FORMULAS C
(NO DIELECTRIC LOSS)

Due to this, we use the m case to examine the other
Green’s function modification formulas [see (61) and (64)]. All
three formulas are compared in Table I, under no dielectric loss,
as to how they affect the attenuation constant. Comparison in
this table is reasonable because all of the formulas produce very
similar numerical values, although they have slightly different
dependencies with frequency. Results given for(in decibels
per millimeter) in parentheses using formulas (61) and (64)
are percentage deviations fromusing (65). It is seen that
using (61) is slightly lower than using (65), the deviation
getting less as the frequency increases.using (64), in com-
parison to using (65), is lower and gets nonmonotonically
closer as frequency increases, then it is higher after crossing
[using (65)] and begins to come closer again.

VII. CONCLUSIONS

This paper has shown how to systematically develop the for-
malism for finding dyadic Green’s function modifications for
zero-thickness conductor SD codes when studying loss of mi-

crostrip configurations. The hierarchy of formulas has at its
bottom several that are analytically easy to evaluate when mod-
ifying anisotropic structure dyadic Green’s functions. Philos-
ophy presented here has recently been followed for anisotropic
ferroelectric coplanar structures, allowing excellent description
of experimental attenuation results [29], [30].
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